
State Of The Performance Tools
(A Personal Opinion)

Douglas Pase, PhD (CSE)

Sandia National Laboratories/SAIC

8/5/2017 Sandia Unclassified Unlimited Release 1

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and 

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. 

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This unclassified 

document is approved for unlimited release

(SAND2017-8098 C).



Computing Environment At Sandia

• Demanding hardware environment
• Multiple very large clusters and MPPs, variety of CPU and network architectures

• Demanding platform operation environment
• Multiple operating systems, many compiler and MPI releases

• Demanding application environment
• Many applications, long running, large code bases, multiple languages (as old as Fortran 77 to 

as new as C++17), multiple programming and concurrency models, multi-physics, multiple 
numerical techniques and always under development

• Build (make/cmake) scripts are often large, complex, convoluted and opaque

• Most developers are Subject Matter Experts working under tight deadlines, often 
rewarded for features over performance, with little time or patience for the 
vagaries of cranky tools

• There is a support team who understands both tools and applications

8/5/2017 Sandia Unclassified Unlimited Release 2



How Do You Build Tools For That?

• Tools must be:

• Easy to use – tools with many steps and many arguments don’t get used

• Robust – tools that break easily don’t get used

• Flexible – tools that don’t work across our many environments don’t get used

• Lightweight – tools that demand many system resources don’t get used

• Scalable – tools that don’t work at full scale, full optimization don’t get used

• Informative – tools that don’t easily give useful information don’t get used

• Documentation must include simple recipes for common problems, 
including as basic as “Hello, world!”

8/5/2017 Sandia Unclassified Unlimited Release 3



Swiss Army Knife Or Multiple Tools?

• Most often used tool at Sandia is custom instrumentation using 
gettimeofday(), rdtsc(), local counters and printf()

• Light weight, understood by developers, robust, easy to use, gives 
measurements in terms of application concepts

• Caliper is able to make this easier

• Single tool that does a few things well, e.g., Allinea MAP?

• Or many separate tools with variety of data, e.g., Open|Speedshop?

• There is a trade-off between simplicity and information

• Often useful to have metrics of a certain class (e.g., MPI, OMP, PMU) 
presented together, but not as important when they’re unrelated

8/5/2017 Sandia Unclassified Unlimited Release 4



Easy To Use

• Easy to instrument applications and collect data

• Transparent analysis phase

• Easy to start the data browser

• Easy to navigate the data

• Easy to remember (consistent across installations)

8/5/2017 Sandia Unclassified Unlimited Release 5



Flexible And Robust

• Works reliably with a wide variety of hardware and software

• Processor and network hardware

• Operating systems

• Languages, including mixed language programs

• Compiler versions

• Library selections

8/5/2017 Sandia Unclassified Unlimited Release 6



Lightweight

• Extra start-up and shut-down time is annoying but tolerated

• Time dilation in the measurements is not accepted

• Memory use must be kept small

8/5/2017 Sandia Unclassified Unlimited Release 7



Scalable

• Large applications (2.5+ million LOC)

• Large, complex libraries (e.g., Boost, Trilinos, Kokkos, Zoltan, MKL)

• Large numbers of cores (e.g., O(10,000) cores or larger)

• Large (wide and deep) networks

8/5/2017 Sandia Unclassified Unlimited Release 8



Informative

• Performance data must reflect production code and work flow

• Data must be gathered at full scale under full optimization

• Must be presented in terms familiar to the audience

• Mapped to program scope (call chain, subroutine or lines of code)

• Recognizable metrics (e.g., MPI wait time, OMP barrier time)

• Unfortunately, the symptoms may occur far from their causes

• Barrier wait time may be far from the work distribution code that causes it

• Choice of mesh upstream may impact downstream performance

8/5/2017 Sandia Unclassified Unlimited Release 9



Tool A - LDPXI 

Pros

• Very light weight

• Variety of measurements – MPI, 
PAPI, I/O, BLAS, memory

• Easy to use

• Gives a summary of the program

Cons

• Home grown

• Does not work with OpenMP

• Struggles with older Fortran

• Requires dynamically loaded 
libraries

• Doesn’t multiplex PAPI counters 
(requires multiple data runs)

8/5/2017 Sandia Unclassified Unlimited Release 10



Tool B

Pros

• Very light CPU overhead

• Very easy to gather data

• Intuitive browser layout

• Finds symptoms quickly

Cons

• Occasional heavy memory usage 
(but being addressed)

• Each MPI rank requires a license 
(large runs run out of licenses)

8/5/2017 Sandia Unclassified Unlimited Release 11



Tool C

Pros

• Intuitive browser interface

Cons

• Separate steps to run, analyze 
and browse performance data

• Analysis fails on large codes

• User selection of sample rate 
(easy to get wrong)

8/5/2017 Sandia Unclassified Unlimited Release 12



Tool D

Pros

• Single purpose tool (MPI data)

• Easy to use (set an env. variable)

• Detailed data includes call chains 
to MPI call sites

Cons

• Output can exceed 500,000 lines 
of text on real codes and runs

• Information gets lost in the mass 
of data

• Needs a separate build for nearly 
every compiler/MPI combination

8/5/2017 Sandia Unclassified Unlimited Release 13



Tool E

Pros

• Wide range of data collection

• Consistent look and feel across 
all data browsing

Cons

• Many ways to accomplish the 
same task

• User must select some of the 
data collection parameters –
error prone and fragile

• More robust on some clusters 
than others (work in progress)

8/5/2017 Sandia Unclassified Unlimited Release 14



Tool F

Pros

• Flexible instrumentation

• Linked in dynamically

• Compiled in

• Added manually

• Extensive set of metrics

• PMU/PAPI, MPI, mem., OMP, I/O

• Works with Vampir

Cons

• Dynamic instrumentation shows 
limited detail

• Limited set of compilers and 
libraries – problem for some 
large codes

• Modify build (make/cmake) 
scripts for best data collection

8/5/2017 Sandia Unclassified Unlimited Release 15



What’s The Point?

• Light weight instrumentation and intelligent data reductions are 
critical to scaling up to exascale systems

• Easy to be swamped by the enormous volume of data generated by 
running large applications at scale

• However, current tools are hobbled by more mundane considerations

• Simplicity and robustness are far larger impediments to tool adoption

• Advanced features can be useful, but not if it makes the tool fragile, 
not at the expense of being flexible, robust, lightweight or scalable

8/5/2017 Sandia Unclassified Unlimited Release 16


